FEWS – Food, Energy, Water Security in Cambodia

November 2016

Suchi Gopal & Josh Pitts

Irit Altman Les Kaufman Roel Boumans

CONSERVATION INTERNATIONAL MacArthur Foundation

Agenda

- 1) Introduction Boston University team
- 2) Our modeling framework
 - 1) Big data analysis FEWS in MIDAS
 - 2) Ecosystem based approach MIMES (agent-based)
 - 3) Larger teams McCarthur Funding/Conservation International
 - 4) Data sources
- 3) Synergies across teams Open access & Open data

FEWS Context for Cambodia

- 1) FEWS research will provide foundational support in the application of ecosystem based-management decisionmaking and design, yielding tools necessary to **improve lives of people(sustainable livelihoods) and futures in Cambodia**
- 2) New and faster data algorithms developed will be generally applicable in other systems and will be a **useful tool** to help local fishers/farmers, NGOS, international development organizations, state, and federal agencies to design and implement sustainable management plans.
- 3) State and federal agencies can formulate sustainability plans and make informed decisions on land cover change, biodiversity, deforestation, and development.

FEWS Modeling – Challenges and Solutions

1) FEWS requires understanding and modeling **systems level interactions**. - integrative, complex, and multi-scale interdependencies across space and time, and the dynamics of their interactions

2) The nexus approach seeks to optimize trade-offs, maximize synergies, and identify mutually beneficial options (i.e. "win wins") across various stakeholders including different humanuse sectors, management bodies, civic groups, and public– private partnerships.

3) Understanding FEWS nexus depends on knowledge and integration of **georeferenced datasets**, ecological, economic, and social processes. Using quantitative approaches, these data can inform models of ecosystem service flows and tradeoffs to demonstrate what is lost and what is gained under alternative decision-making scenarios.

FEWS Modeling Framework

FEWS Approach

- Big data volume, quality, collection
- Data mining processing and validation
- Data insights how does it help decision making
- User stakeholder groups understanding

FEWS Data Framework

Satellite	Sensor(s)	Dates	Spatial Resolution
Landsat 1-3	MSS	1972 - 1983	80 meter
Landsat 4 and 5	Landsat TM	1982 - 2013	30 m (120 m thermal band)
Landsat 7	Landsat ETM+	1999 - present	15 m panchromatic, 30 m multispectral, 60 m thermal
Landsat 8 (LDCM)	Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS)	2013 - present	15m panchromatic; 30m multispectral; 100m thermal
Terra, Aqua	MODerate Resolution Imaging Spectroradiometer (MODIS)	2000 - present	250 – 5600 meter
Terra	ASTER (VNIR & TIR)	2000 – present	15m VNIR; 90m TIR
	SWIR	2000 - 2008	30m SWIR
EO-1	Hyperion, Advanced Land Imager (ALI)	2000 - present	10-30 meter
Suomi NPP	Visible Infrared Imager Radiometer Suite (VIIRS)	2013 - present	375-750 meter
Space Shuttle Endeavour	Shuttle Radar Topography Mission (SRTM)	2000	30 meter (1 Arc-Second Global)

Ecosystem Service Tradeoff Analysis to Support Decision Making in the Tonle Sap Basin

Project: The Tonle Sap is critically important to Cambodia and the larger region because the system plays a direct role by

- Securing food and supporting livelihood strategies'
- Generating income
- Maintaining high biodiversity and unique species
- Providing flood protection

The Mekong Basin is in experiencing rapid changes in its human population, economies, and environmental character. Nowhere are these changes more apparent or important than in the area of Tonle Sap Lake.

- As a result of decisions made within and outside the lake system, the Tonle Sap sits at an important crossroads. Alternative decisions about responding to change will have consequences on human wellbeing, natural resource flows, and protection of the biological and cultural heritage of the Lake Tonle Sap Integrated Modeling: Connections To The Larger Research Initiative

Different Scenarios (4-1 in order of priority)

DPSIR Framework

Response – Change in Economic Prosperity of 4 User Groups Measure response of each group on their economic

status and social status . Use a tripartite indicator of well being.

Tonle Sap Integrated Modeling: Approach

Tonle Sap Integrated Modeling: Design and Methods

MODIS Landcover/Landuse

(Friedl et al. 2002)

2011

Color Key	Landuse/ Landcover	2001 (thousand km2)	2011 (thousand km2)	Change (%)	
	Agriculture	23.4	35.5	52%	
	Savannas	28.3	20.6	-27%	
	Forest	24.6	19.3	-22%	
	Water	3.9	3.4	-13%	
	Grassland	1.4	2.6	79%	

Tonle Sap Integrated Modeling: Design and Methods

DATA/INFORMATION TYPE	CURRENTLY USED	FUTURE UPDATES
Water levels	Water guage (Kampong Luong),	
	MRC water levels, 3S water levels	
	(Arias 2014)	
Landuse/Landcover - Floodplain	Arias 2012 (Floodplain landuse rules)	
Landuse/Landcover - Upland	MODIS 2001-2013,	
	Land Concessions (Open	
	Development)	
Fish Community	BayFish (Expert opinion combined	Fish sampling program (V. Elliot)
	probabilities)	
Fish Ecology		Foodweb theory (K. McCann, S. Lek),
		Carbon pathways (G. Holtgrive, B.
		McMeans), Morphmetrics and
		functional ecology (L. Kaufman)
Tetrapod Community	IUCN derived habitat maps	
Human Pop Change and Demographics	Cambodia Census, Landscan	Asiapop data
Health and Nutrition	IFReDI food and nutrition survey data	Micronutrients (G. Holtgrieve)
Livelihood Structure and Security	Keskiken and Varis work	Livelihood security surveys (E. Fraser)
Governance		Community fishing surveys (R. Pomeroy)

e 2. Fejervarya limnocharis

Area change from baseline (modeled) habitat cover as a response to different future scenarios.

Model scenarios	Rainfed habitats		odel scenarios Rainfed habitats		del scenarios Rainfed habitats Tra		Transitional	Transitional habitats		Seasonally flooded habitats		Gallery forest		Open water	
	km ²	%	km ²	%	km ²	%	km ²	%	km ²	%					
UMD	813	10	-189	-4	-612	-13	-537	-82	525	21					
2030DEV	1061	13	-281	-6	-810	-17	-536	-82	567	22					
2060DEV	1215	14	-133	-3	-1041	-22	-495	-75	454	18					

Model scenarios	Rainfed habitats		Transitional habitats		Seasonally flo	Gallery forest		Open water		
	km ²	%	km ²	%	km ²	%	km ²	%	km ²	%
UMD	813	10	-189	-4	-612	-13	-537	-82	525	21
2030DEV	1061	13	-281	-6	-810	-17	-536	-82	567	22
2060DEV	1215	14	-133	-3	-1041	-22	-495	-75	454	18

	Open water	
	km ² %	
UMD	525 21	
2030DEV	567 22	
2060DEV	454 18	
2060DEV 2060DEV	454	

Model scenarios	Rainfed habitats		Iodel scenarios Rainfed habitats		Transitional	l habitats	Seasonally flooded habitats		Gallery forest		Open water	
	km ²	%	km ²	%	km ²	%	km ²	%	km ²	%		
UMD	813	10	-189	-4	-612	-13	-537	-82	525	21		
2030DEV	1061	13	-281	-6	-810	-17	-536	-82	567	22		
2060DEV	1215	14	-133	-3	-1041	-22	-495	-75	454	18		

Model scenarios	narios Rainfed habitats		Transitional habitats		Seasonally flooded habitats		Gallery forest		Open water	
	km ²	%	km ²	%	km ²	%	km ²	%	km ²	%
UMD	813	10	-189	-4	-612	-13	-537	-82	525	21
2030DEV	1061	13	-281	-6	-810	-17	-536	-82	567	22
2060DEV	1215	14	-133	-3	-1041	-22	-495	-75	454	18

Landcover and Landcover Change

Landuse and Landuse Change

Primary producers

Aerobic Anaerobic Dynamics

Fish Dynamics and Fishing Regulations

Dry season Holes

Fish Life History and Migration Dynamics

ESS and Subsidies

Capital within LandUse

Economics

Economic Attributes and the Avail bility of Services for Substituting Shortfall in Local Services

Hydrology from Dam Scenarios

Input of Global Climate Change Scenarios

Load GCC scenario outputs

Spatial Outputs

Time Series Outputs

Spatial Outputs

Time Series Outputs

Tonle Sap Integrated Modeling: Design and Methods

Tonle Sap Integrated Modeling: Design and Methods

Baran E., Makin I., Baird I.G. 2003 BayFish: a model of environmental factors driving fish production in the Lower Mekong Basin. Contribution to the Second International Symposium on Large Rivers for Fisheries. Phnom Penh, Cambodia, 11-14 February 2003.

Tetrapod Biodiversity in Cambodia

Source Data: International Union for The Conservation of Nature (IUCN)

Landcover and Landcover Change

Landuse and Landuse Change

Primary producers

Aerobic Anaerobic Dynamics

Fish Dynamics and Fishing Regulations

Dry season Holes

Fish Life History and Migration Dynamics

ESS and Subsidies

Capital within LandUse

Economics

Economic Attributes and the Avail bility of Services for Substituting Shortfall in Local Services

Hydrology from Dam Scenarios

Input of Global Climate Change Scenarios

Load GCC scenario outputs

